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REMARKS ON THE SCHOOF-ELKIES-ATKIN ALGORITHM 

L. DEWAGHE 

ABSTRACT. Schoof's algorithm computes the number m of points on an ellip- 
tic curve E defined over a finite field Fq. Schoof determines m modulo small 
primes e using the characteristic equation of the Frobenius of E and polyno- 
mials of degree 0(e2). With the works of Elkies and Atkin, we have just to 
compute, when e is a "good" prime, an eigenvalue of the Frobenius using poly- 
nomials of degree 0(t). In this article, we compute the complexity of Muller's 
algorithm, which is the best known method for determining one eigenvalue and 
we improve the final step in some cases. Finally, when e is "bad", we describe 
how to have polynomials of small degree and how to perform computations, 
in Schoof's algorithm, on x-values only. 

1. INTRODUCTION 

Let E be an elliptic curve defined over the finite field Fq of large characteristic 
p. The set of IFq-points of E, denoted E(Fq), is a finite abelian group [20]. 

In 1985, Schoof [17] gave a deterministic polyromial-time algorithm for comput- 
ing #E(Fq). The algorithm determines the characteristic equation of the Frobenius 
7r of E, acting on the ?-torsion points E[f] of E, for f prime. But, working on E[f] 
uses computations on polynomials modulo the ?-th division polynomial ff, and this 
is not practical, due to the size of ff. 

In 1991, Elkies [10] showed how to perform computations in the kernel of an 
isogeny of degree X, by computing a factor of degree d = (- 1)/2 of ff. This 
idea works for nearly half the primes X, called Elkies primes. For such an X, the 
algorithm has just to compute an eigenvalue of 7r acting on E[f]. 

Atkin [1] had given in 1988 the sort and match method used now for "bad" 
primes ?. Then he made the algorithm practical for very large finite fields [2] and 
the metho-d became the SEA (for Schoof-Elkies-Atkin) algorithm. 

For the last improvements in this scope, see [5], [6] and [12] and for the case p 
small, see [7] and the implementation in [13]. 

In this article we compute, for an Elkies prime X, the complexity of the best 
asymptotic method used for computing an eigenvalue of 7r over E[f] and we show 
then how to avoid, in some cases, the computation with y-coordinates of points. 
Finally, for a bad prime X, we explain how to obtain a proper factor of ff and show 
then how to avoid again, in Schoof's algorithm, computations with y-coordinates 
of points. 
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These results have enabled Morain [15] to compute #E(Fp), for p prime of 500 
digits (this is the actual record). 

2. THE SEA ALGORITHM 

2.1. Elliptic curve over Fq. Let E be a non-supersingular elliptic curve given by 
an affine equation F(x, y) = 0 where 

F(x, y) = y2 +aixy+a3y-(x3 + a2X2 + a4X + a6) 

with the ai's in Fq. 
The set E(Fq) = {(x,iy) E Fq X ]Fq F(x y) 0} U {OE} is an abelian group 

and the law, denoted D, has OE = [0: 1: 0] as neutral element. We denote by fn 
the n-th division polynomial in x. The degree of fn is (nr2 - 1)/2 if n is odd. The 
group of n-torsion points, E[n] = {P E E(Fq) I nP = OE} can be represented by 
Fq[x, y]/(ffn(x), F(x, y)) (see [18]). 

The morphism 7r : E(Fq) > E(]Fq), (x, y) | + (xv, yq) of E satisfies 7r2 - t7r + q = 0 
over E(Fq), with t E 2, satisfying Itl < 2Vf. Recall : #E(Fq) = q + 1 - t. When 
f is an odd prime number (see [6] for ? = 2), we consider the restriction 7re of 7r to 
E[f], which satisfies 7r2_ -F7re + k = 0 over E[f] with t T- mod f and q = k mod ?. 
Now, if f :4 p, E[f] _ 2/f x 2/fe, so we can view E[f] as a vector space over IFe 
and x2 -Tx+k as the characteristic equation of 7re. We denote by G1, G2,G. ,+Ge 
the (? + 1) cyclic subgroups of E(Fq), of order ?. 

2.2. The SEA algorithm. Schoof [17] determines #E(Fq) = q+1-t by searching 
for a match among the f equations (x2,yq ) @ k(x,y) = r 0 < < -1, 
over E[e]. 

Elkies works in the kernel Gi of one of the f + 1 isogenies E -i Ei, 1 < i < f + 1, 
of degree ?. When D = T2 - 4k is a square modulo f the eigenvalues of 7rf are 
in IF> and f is called an Elkies prime. Hence, in this case, the eigenspaces are Fq- 
rational and the corresponding isogenies are defined over Fq and if we let E[f]lA be 
an eigenspace with PA a generator, we have he(x) = fJd=1(X - X(iPA)) E Fq[x] and 

E [f] A = (Pa ) = ]Fq [x: y] / (hf (x), 5(x: y)) . 

Let 4e (x, y) = 0 be the canonical equation of the modular curve Xo (f) (see [2], 
[15] for a simpler equation). We know that f is an Elkies prime if and only if 
4De(j(E), x) = 0 has a root in Fq. 

For p :4 2, 3 and f an Elkies prime, the formulas of Atkin [2],[15] give, from a root 
of 4?e(j(E), x) = 0 in Fq, the value of P1 = Ztid x(iPA) and the coefficients of the 
corresponding Ei. So [10], one can compute the Pk = Zi=_ xk(iPA) for 1 < k < d 
and hence hf by Newton's formula if f <K p. 

If p = 2 or 3 or f p see Couveignes' work [7] and also [13]. 
Once hf is known, we have to search a match among the f- 1 equations (xq, yq) 

A(x,-y), 1 < A < f-1, over E[f]A. 
If D is not a square modulo X, then f is called an Atkirn prime and the Gi's are 

IFe-rational where e is the smallest integer n for which ire is in ]Fe. 

3. LOOKING FOR ONE EIGENVALUE 

3.1. Computing A mod ?. We compute the complexity of the algorithm of Muller 
[16] which computes A mod ?. Muller uses an integer kopt [ d-] such that for all 
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A in IF* there are integers i, j with 1 < i, j < kopt such that A ?i/j mod ?. So, he 
compares j (xq, yq) and i(x, y) using division polynomials, which means comparisons 
of rational functions. 

The elementary operation is taken to be the cost of one multiplication of two 
elements in IFq. Let M(d) be the number of operations needed to compute the 
multiplication of two polynomials of degree d (see [11]). 

Proposition 1. Muiller's method takes O(M(d) log q) + 0( VdM(d)) + 0(d2) oper- 
ations and 0(d d) space. 

Proof. The computation of xc mod hf (x) requires 0(M(d) log q) operations and the 
computation of the kopt first division polynomials requires 0( VdAM(d)) operations. 

The x(j(xq, yq)) are computed using the recursive formulae of division polyno- 
mials in Xq (see [8]). This requires 0(VdMVI(d)) operations, which is more efficient 
than modular compositions x(j(x, y)) o Xq (see [4], [19]). 

To compare two rational functions modulo he (x) in Fq [x], one can test the match 
using a random linear map [16] and then verify polynomial equality. So, the com- 
parisons of coordinates takes 0(2M(d)) + 0(2d2) operations. Lii 

3.2. The sign of A mod ?. Suppose we have integers i, j such that j7re ?i over 
E[f]A, where f is an Elkies prime. We have A IA0 mod f with A0 ij1 mod ?. 
For ,u E IF2, we call semi-order of ,, denoted sC(u), the order of , in 1F2/(?1). 

* Jfp :& 2, E has an equation of the form y2 9(x) := X3 + a2X2 + a4x + a-. 

Theorem 1. Let he be the factor of fe corresponding to A and ge be a factor of 
degree s(Ao) of hf and let r be Resultant(ge,9).. Then A = As(Ao)(')Ao. When 
f=3 mod 4, one can take ge = he. 

Proof. For s(Ao) odd, we have 7r-s(A?) = ?AS(AO)Id over E[f]A. If 7r<s(O) - Id, then 
E[f]A c E(Fqs(\o)); hence, for all P in E[f]\, g(x(P)) is a square in Fqs(xo), and 

since Hjs(1O)(g(xi)) = r, with xi the roots of g9, r is a square in Fq. Whereas, if 
r S(AO) = -Id over E[f]then q -1. 

Note that, if f 1 mod 4, then one can compute A0 using he and then determine 
A, if s(Ao) = s(?Ao) is odd, using a factor of he. 

* If p = 2, let y2 + Xy = x3 + B (with B E 7F2m) be an equation of E (see [14]). 

Proposition 2. Let he be a factor of fe corresponding to A = ?A0. If he has a 
factor gY = xs(AO) - ?1xs(A0)-l +... + (-1)S((Ao)S(AO) of odd degree s(Ao), then 

|A,s('O)Ao if r_[(?j + B (s2 )0129s(/\o)ss(/\o)-2 )/g2xo =? 

A )o otherwise. 

When f- 3 mod 4, one can take ge = he. 

Proof. The equation X2 + X - -y has a root in an extension IF2m if and only if 
rlr(y) = 0 (see [9]). Hence the points of E[f]A = (P = (x, y)) are in IFqs (oA if and 
only if 1YQ(yj) = 0, where xi = x(iP) and -yi = xi + B/x? . Finally, computing 

Zs(AO) rl(-yi) gives the desired result. LII 
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4. ELKIES' METHOD FOR ATKIN PRIMES 

4.1. Computing a factor of ff. Assume that q = p prime, :4 2,3 and that f is 
an Atkin prime with f << p. 

The (f + 1) curves Ei are defined over Fpe , hence ff has a factor of degree d over 
Fpe and so by conjugation we can find a factor of degree ed over IFp. 

First, we compute a monic irreducible factor Me(x) of degree e of be(j(E), x) 
in IFp[x]. We denote by xi, i = 1, 2,... , e, the roots of Me(x) 0 in Fpe. Then, 
in lFp[x]/Me(x), we determine ed polynomials Pk(x) = a_kX3 of degree e - 1, 
(see [2], [10]) and since, for 1 < k < ed, we have 

e e e-i e-i e e-i 
def j 

Pk - Pk(xi) = Laj,kXi) - EaJk(2) = ajkp 
i=l i=1 j=0 j=0 i=i j=0 

with pj 1Ee xi computed from the symmetric functions of Me (x), a factor of 
degree ed of ff can be computed. 

Example. We consider the elliptic curve y2 = x3+2x+41 over JF59 with j = 31. We 
determine a factor of the division polynomial f5 of E. Over 'F59, x3 +41x2 +45x+ 32 
is a factor of O5 (x, 31). We obtain 

P1(x) 1156X2 + 31x +41 p4(x) I 16X2 + llx + 6 
p2(x) 46X2 + 22x + 26 p5(x) 51X2 + 41x + 17 
p3(x) 1 21x + 20x + 39 p6 (x) 34x + 41x 

And po = 2, Pi = 38, P2 = 28, P3 = 22, P4 = 7, p5 = 38, P6 = 21, hence 
x6 + 21x5 + 13x3 + lOX2 + 3x + 55 is a factor of f5 over F59. 

4.2. Computing t mod ?. We show how, when f is an Atkin prime, we can test 
the equation 7r 2 + k = -7re in 'T by computing only x-coordinates of points. We 
recall first that if 

(xi, Yl) E (X2, Y2) = (X3, y3) and (x1, YE) (X2, Y2) = (x4, Y4), 

then we have 

(X3 + X4)(X1 - X2)2 =S(Xl,X2) and X3X4(X1-X2 )2 = P(X1, X2) 

with 

S(X1, X2) = (X1 + X2)(ala3 + 2a4 + 2xlx2) + xlx2(aS + 4a2) + 4a6 + a , 

and 

P(Xl, X2)= (X1X2-a4)(XlX2-a4-ala3)-(Xl + X2 + a2)(a2 + 4a6) -a 2a6 

So the values X3 and X4 are solutions of the quadratic equation E(X) = NX2 - 

SX + P with N(xi, x2) = (x1 -x2)2 
Following Muller's idea, we introduce the integers i, j and kopt with the equation 

i7r2 + ik = jir. We search a value j for which x(jwr) is a root of E(X) = 0 given 

by S(xiqxik), P(x1jkxik) and N(xi Xk) 
Indeed, if X(i7rf + ik) = x(jlre), then, for some To, 7if + k = ?To7re over EA, 

so - ?T0 mod ?. Whereas, if x(i7r2 - ik) - x(jfw), then i7r2 -k = ?Torf and 
-re 2k/(T ? To), which is impossible since f is an Atkin prime. 

Hence, we avoid the computation of yq2 and yq and obtain t ?T0 mod ?. 
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4.3. The sign of t mod ?. Since 7re satisfies the equation x2 - x + k = 0, we 
have 7r = Qtrf + Pn with Pn and Qn, some polynomials in T and k. We have 
Pn =-kQn_- and moreover the polynomial Qn contains only even powers of T 

if n is odd and only odd powers otherwise [3]. On the other hand, 7r = Pe and 
the value of e does not depend on the sign of T. Hence, when e is odd, we have 
Pe ( k) -= ?Pe -( k), soe = ?P, (To, k). Let w0 be P (To, k). 

Proposition 3. Assume p 7& 2, e odd; let he be a factor of degree ed of fe, ge be a 
factor of degree es(wo) of he and r be Resultant(ge, 9). Then, when s(wo) is odd, 
we have t =(rq)w'(wO)To mod ?. When f 3 mod 4, one can take ge = he. 

Proof. We have 7r' = ?woId over E[e]; hence, if s(wo) is odd, then 7res(wo) = 

?WS(w0)Id over E[f] and, if d is odd, then Ted = ?WdwId = ?(we)Id over E[f]. El 

F;rom 7r 2 =T0i7r + k, we easily compute w0 = PC(TO, k). The decomposition type 
of he is determined by computing s(wo). 

Example. Let us consider the curve y2 = x3 + 4312x + 9167 over IF12853. If 
e = 19, then we have e = 5 and using a factor h19 of degree 45 of f19 we obtain 
t ?7 mod 19. We compute r = Resultant(x3 + 4312x + 9167, h19) = 11226; since 
(p) = l and w0 = P5(7,9) = 4, we have t 7 mod 19. 

If e = 13, then e = 7 and To = 5. Since w0 = P7(5,9) = 10, and s(10) = 3, 
the polynomial h13 has an irreducible factor 913 of degree 21. We obtain r = 
Resultant(x3 + 4312x + 9167, 913) = 9515 and (p) = -1, so we have t -5 mod 13. 

Proposition 4. Let hf be a factor of degree ed of ff. If p = 2 and e is odd, then, 
when s(wo) is odd, we have 

f ws(wo)TO if (?1 + B(2S(w)l- 2es(wo)es(wo)-2)/2S()) = 0, 

-wWo)To otherwise, 

with s- the symmetric functions of a factor g9 of hf of degree es(w). When f 
3 mod 4, one can take g9 = he. 
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