REMARKS ON THE SCHOOF-ELKIES-ATKIN ALGORITHM

L. DEWAGHE

Abstract

Schoof's algorithm computes the number m of points on an elliptic curve E defined over a finite field \mathbb{F}_{q}. Schoof determines m modulo small primes ℓ using the characteristic equation of the Frobenius of E and polynomials of degree $O\left(\ell^{2}\right)$. With the works of Elkies and Atkin, we have just to compute, when ℓ is a "good" prime, an eigenvalue of the Frobenius using polynomials of degree $O(\ell)$. In this article, we compute the complexity of Müller's algorithm, which is the best known method for determining one eigenvalue and we improve the final step in some cases. Finally, when ℓ is "bad", we describe how to have polynomials of small degree and how to perform computations, in Schoof's algorithm, on x-values only.

1. Introduction

Let E be an elliptic curve defined over the finite field \mathbb{F}_{q} of large characteristic p. The set of \mathbb{F}_{q}-points of E, denoted $E\left(\mathbb{F}_{q}\right)$, is a finite abelian group [20].

In 1985, Schoof [17] gave a deterministic polynomial-time algorithm for computing $\# E\left(\mathbb{F}_{q}\right)$. The algorithm determines the characteristic equation of the Frobenius π of E, acting on the ℓ-torsion points $E[\ell]$ of E, for ℓ prime. But, working on $E[\ell]$ uses computations on polynomials modulo the ℓ-th division polynomial f_{ℓ}, and this is not practical, due to the size of f_{ℓ}.

In 1991, Elkies [10] showed how to perform computations in the kernel of an isogeny of degree ℓ, by computing a factor of degree $d=(\ell-1) / 2$ of f_{ℓ}. This idea works for nearly half the primes ℓ, called Elkies primes. For such an ℓ, the algorithm has just to compute an eigenvalue of π acting on $E[\ell]$.

Atkin [1] had given in 1988 the sort and match method used now for "bad" primes ℓ. Then he made the algorithm practical for very large finite fields [2] and the method became the SEA (for Schoof-Elkies-Atkin) algorithm.

For the last improvements in this scope, see [5], [6] and [12] and for the case p small, see [7] and the implementation in [13].

In this article we compute, for an Elkies prime ℓ, the complexity of the best asymptotic method used for computing an eigenvalue of π over $E[\ell]$ and we show then how to avoid, in some cases, the computation with y-coordinates of points. Finally, for a bad prime ℓ, we explain how to obtain a proper factor of f_{ℓ} and show then how to avoid again, in Schoof's algorithm, computations with y-coordinates of points.

[^0]These results have enabled Morain [15] to compute $\# E\left(\mathbb{F}_{p}\right)$, for p prime of 500 digits (this is the actual record).

2. The SEA algorithm

2.1. Elliptic curve over \mathbb{F}_{q}. Let E be a non-supersingular elliptic curve given by an affine equation $\mathcal{F}(x, y)=0$ where

$$
\mathcal{F}(x, y)=y^{2}+a_{1} x y+a_{3} y-\left(x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right)
$$

with the a_{i} 's in \mathbb{F}_{q}.
The set $E\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in \mathbb{F}_{q} \times \mathbb{F}_{q}, \mathcal{F}(x, y)=0\right\} \cup\left\{O_{E}\right\}$ is an abelian group and the law, denoted \oplus, has $O_{E}=[0: 1: 0]$ as neutral element. We denote by f_{n} the n-th division polynomial in x. The degree of f_{n} is $\left(n^{2}-1\right) / 2$ if n is odd. The group of n-torsion points, $E[n]=\left\{P \in E\left(\overline{\mathbb{F}}_{q}\right) \mid n P=O_{E}\right\}$ can be represented by $\mathbb{F}_{q}[x, y] /\left(f_{n}(x), \mathcal{F}(x, y)\right)$ (see [18]).

The morphism $\pi: E\left(\overline{\mathbb{F}}_{q}\right) \rightarrow E\left(\overline{\mathbb{F}}_{q}\right),(x, y) \mapsto\left(x^{q}, y^{q}\right)$ of E satisfies $\pi^{2}-\dot{t} \pi+q=0$ over $E\left(\overline{\mathbb{F}}_{q}\right)$, with $t \in \mathbb{Z}$, satisfying $|t| \leq 2 \sqrt{q}$. Recall : $\# E\left(\mathbb{F}_{q}\right)=q+1-t$. When ℓ is an odd prime number (see [6] for $\ell=2$), we consider the restriction π_{ℓ} of π to $E[\ell]$, which satisfies $\pi_{\ell}^{2}-\tau \pi_{\ell}+k=0$ over $E[\ell]$ with $t \equiv \tau \bmod \ell$ and $q \equiv k \bmod \ell$. Now, if $\ell \neq p, E[\ell] \cong \mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}$, so we can view $E[\ell]$ as a vector space over \mathbb{F}_{ℓ} and $x^{2}-\tau x+k$ as the characteristic equation of π_{ℓ}. We denote by $G_{1}, G_{2}, \ldots, G_{\ell+1}$ the $(\ell+1)$ cyclic subgroups of $E\left(\overline{\mathbb{F}}_{q}\right)$, of order ℓ.
2.2. The SEA algorithm. Schoof [17] determines $\# E\left(\mathbb{F}_{q}\right)=q+1-t$ by searching for a match among the ℓ equations $\left(x^{q^{2}}, y^{q^{2}}\right) \oplus k(x, y)=\tilde{\tau}\left(x^{q}, y^{q}\right), 0 \leq \tilde{\tau} \leq \ell-1$, over $E[\ell]$.

Elkies works in the kernel G_{i} of one of the $\ell+1$ isogenies $E \xrightarrow{\varrho_{i}} E_{i}, 1 \leq i \leq \ell+1$, of degree ℓ. When $D=\tau^{2}-4 k$ is a square modulo ℓ the eigenvalues of π_{ℓ} are in \mathbb{F}_{ℓ} and ℓ is called an Elkies prime. Hence, in this case, the eigenspaces are $\mathbb{F}_{q^{-}}$ rational and the corresponding isogenies are defined over \mathbb{F}_{q} and if we let $E[\ell]_{\lambda}$ be an eigenspace with P_{λ} a generator, we have $h_{\ell}(x)=\prod_{i=1}^{d}\left(x-x\left(i P_{\lambda}\right)\right) \in \mathbb{F}_{q}[x]$ and

$$
E[\ell]_{\lambda}=\left\langle P_{\lambda}\right\rangle=\mathbb{F}_{q}[x, y] /\left(h_{\ell}(x), \mathcal{F}(x, y)\right) .
$$

Let $\Phi_{\ell}(x, y)=0$ be the canonical equation of the modular curve $X_{0}(\ell)$ (see [2], [15] for a simpler equation). We know that ℓ is an Elkies prime if and only if $\Phi_{\ell}(j(E), x)=0$ has a root in \mathbb{F}_{q}.

For $p \neq 2,3$ and ℓ an Elkies prime, the formulas of Atkin [2],[15] give, from a root of $\Phi_{\ell}(j(E), x)=0$ in \mathbb{F}_{q}, the value of $p_{1}=\sum_{i=1}^{d} x\left(i P_{\lambda}\right)$ and the coefficients of the corresponding E_{i}. So [10], one can compute the $p_{k}=\sum_{i=1}^{d} x^{k}\left(i P_{\lambda}\right)$ for $1 \leq k \leq d$ and hence h_{ℓ} by Newton's formula if $\ell \ll p$.

If $p=2$ or 3 or $\ell \approx p$ see Couveignes' work [7] and also [13].
Once h_{ℓ} is known, we have to search a match among the $\ell-1$ equations $\left(x^{q}, y^{q}\right)=$ $\tilde{\lambda}(x, y), 1 \leq \tilde{\lambda} \leq \ell-1$, over $E[\ell]_{\lambda}$.

If D is not a square modulo ℓ, then ℓ is called an Atkin prime and the G_{i} 's are $\mathbb{F}_{p^{e}}$-rational where e is the smallest integer n for which π_{ℓ}^{n} is in \mathbb{F}_{ℓ}.

3. Looking For one eigenvalue

3.1. Computing $\lambda \bmod \ell$. We compute the complexity of the algorithm of Müller [16] which computes $\lambda \bmod \ell$. Müller uses an integer $k_{\text {opt }} \approx\lceil\sqrt{d}\rceil$ such that for all
λ in \mathbb{F}_{ℓ}^{*}, there are integers i, j with $1 \leq i, j \leq k_{\text {opt }}$ such that $\lambda \equiv \pm i / j \bmod \ell$. So, he compares $j\left(x^{q}, y^{q}\right)$ and $i(x, y)$ using division polynomials, which means comparisons of rational functions.

The elementary operation is taken to be the cost of one multiplication of two elements in \mathbb{F}_{q}. Let $M(d)$ be the number of operations needed to compute the multiplication of two polynomials of degree d (see [11]).
Proposition 1. Müller's method takes $O(M(d) \log q)+O(\sqrt{d} M(d))+O\left(d^{2}\right)$ operations and $O(d \sqrt{d})$ space.

Proof. The computation of $x^{q} \bmod h_{\ell}(x)$ requires $O(M(d) \log q)$ operations and the computation of the $k_{\text {opt }}$ first division polynomials requires $O(\sqrt{d} M(d))$ operations.

The $x\left(j\left(x^{q}, y^{q}\right)\right)$ are computed using the recursive formulae of division polynomials in x^{q} (see [8]). This requires $O(\sqrt{d} M(d))$ operations, which is more efficient than modular compositions $x(j(x, y)) \circ x^{q}$ (see [4], [19]).

To compare two rational functions modulo $h_{\ell}(x)$ in $\mathbb{F}_{q}[x]$, one can test the match using a random linear map [16] and then verify polynomial equality. So, the comparisons of coordinates takes $O(2 M(d))+O\left(2 d^{2}\right)$ operations.
3.2. The sign of $\lambda \bmod \ell$. Suppose we have integers i, j such that $j \pi_{\ell}= \pm i$ over $E[\ell]_{\lambda}$, where ℓ is an Elkies prime. We have $\lambda \equiv \pm \lambda_{0} \bmod \ell$ with $\lambda_{0} \equiv i j^{-1} \bmod \ell$. For $\mu \in \mathbb{F}_{\ell^{2}}^{*}$, we call semi-order of μ, denoted $s(\mu)$, the order of μ in $\mathbb{F}_{\ell^{2}}^{*} /(\pm 1)$.

- If $p \neq 2, E$ has an equation of the form $y^{2}=\mathcal{G}(x):=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$.

Theorem 1. Let h_{ℓ} be the factor of f_{ℓ} corresponding to λ and g_{ℓ} be a factor of degree $s\left(\lambda_{0}\right)$ of h_{ℓ} and let r be Resultant $\left(g_{\ell}, \mathcal{G}\right)$. Then $\lambda=\lambda_{0}^{s\left(\lambda_{0}\right)}\left(\frac{r}{q}\right) \lambda_{0}$. When $\ell \equiv 3 \bmod 4$, one can take $g_{\ell}=h_{\ell}$.

Proof. For $s\left(\lambda_{0}\right)$ odd, we have $\pi_{\ell}^{s\left(\lambda_{0}\right)}= \pm \lambda_{0}^{s\left(\lambda_{0}\right)} I d$ over $E[\ell]_{\lambda}$. If $\pi_{\ell}^{s\left(\lambda_{0}\right)}=I d$, then $E[\ell]_{\lambda} \subset E\left(\mathbb{F}_{q^{s\left(\lambda_{0}\right)}}\right)$; hence, for all P in $E[\ell]_{\lambda}, \mathcal{G}(x(P))$ is a square in $\mathbb{F}_{q^{s\left(\lambda_{0}\right)}}$, and since $\prod_{i=1}^{s\left(\lambda_{0}\right)}\left(\mathcal{G}\left(x_{i}\right)\right)=r$, with x_{i} the roots of g_{ℓ}, r is a square in \mathbb{F}_{q}. Whereas, if $\pi_{\ell}^{s\left(\lambda_{0}\right)}=-I d$ over $E[\ell]_{\lambda}$, then $\left(\frac{r}{q}\right)=-1$.

Note that, if $\ell \equiv 1 \bmod 4$, then one can compute λ_{0} using h_{ℓ} and then determine λ, if $s\left(\lambda_{0}\right)=s\left(\pm \lambda_{0}\right)$ is odd, using a factor of h_{ℓ}.

- If $p=2$, let $y^{2}+x y=x^{3}+B$ (with $B \in \mathbb{F}_{2^{m}}$) be an equation of E (see [14]).

Proposition 2. Let h_{ℓ} be a factor of f_{ℓ} corresponding to $\lambda= \pm \lambda_{0}$. If h_{ℓ} has a factor $g_{\ell}=x^{s\left(\lambda_{0}\right)}-\tilde{s}_{1} x^{s\left(\lambda_{0}\right)-1}+\cdots+(-1)^{s\left(\lambda_{0}\right)} \tilde{s}_{s\left(\lambda_{0}\right)}$ of odd degree $s\left(\lambda_{0}\right)$, then

$$
\lambda= \begin{cases}\lambda_{0}^{s\left(\lambda_{0}\right)} \lambda_{0} & \text { if } \operatorname{Tr}\left(\tilde{s}_{1}+B\left(\tilde{s}_{s\left(\lambda_{0}\right)-1}^{2}-2 \tilde{s}_{s\left(\lambda_{0}\right)} \tilde{s}_{s\left(\lambda_{0}\right)-2}\right) / \tilde{s}_{s\left(\lambda_{0}\right)}^{2}\right)=0, \\ -\lambda_{0}^{s\left(\lambda_{0}\right)} \lambda_{0}, & \text { otherwise. }\end{cases}
$$

When $\ell \equiv 3 \bmod 4$, one can take $g_{\ell}=h_{\ell}$.
Proof. The equation $X^{2}+X=\gamma$ has a root in an extension $\mathbb{F}_{2^{n}}$ if and only if $\operatorname{Tr}(\gamma)=0$ (see [9]). Hence the points of $E[\ell]_{\lambda}=\langle P=(x, y)\rangle$ are in $\mathbb{F}_{q^{s}\left(\lambda_{0}\right)}$ if and only if $\operatorname{Tr}\left(\gamma_{i}\right)=0$, where $x_{i}=x(i P)$ and $\gamma_{i}=x_{i}+B / x_{i}^{2}$. Finally, computing $\sum_{i=1}^{s\left(\lambda_{0}\right)} \operatorname{Tr}\left(\gamma_{i}\right)$ gives the desired result.

4. Elkies' method for Atkin primes

4.1. Computing a factor of f_{ℓ}. Assume that $q=p$ prime, $\neq 2,3$ and that ℓ is an Atkin prime with $\ell \ll p$.

The $(\ell+1)$ curves E_{i} are defined over $\mathbb{F}_{p^{e}}$, hence f_{ℓ} has a factor of degree d over $\mathbb{F}_{p^{e}}$ and so by conjugation we can find a factor of degree ed over \mathbb{F}_{p}.

First, we compute a monic irreducible factor $M_{\ell}(x)$ of degree e of $\Phi_{\ell}(j(E), x)$ in $\mathbb{F}_{p}[x]$. We denote by $x_{i}, i=1,2, \ldots, e$, the roots of $M_{\ell}(x)=0$ in $\mathbb{F}_{p^{e}}$. Then, in $\mathbb{F}_{p}[x] / M_{\ell}(x)$, we determine ed polynomials $p_{k}(x)=\sum_{j=0}^{e-1} a_{j, k} x^{j}$ of degree $e-1$, (see [2], [10]) and since, for $1 \leq k \leq e d$, we have

$$
p_{k} \stackrel{\text { def }}{=} \sum_{i=1}^{e} p_{k}\left(x_{i}\right)=\sum_{i=1}^{e}\left(\sum_{j=0}^{e-1} a_{j, k} x_{i}^{j}\right)=\sum_{j=0}^{e-1} a_{j, k}\left(\sum_{i=1}^{e} x_{i}^{j}\right)=\sum_{j=0}^{e-1} a_{j, k} \tilde{p}_{j}
$$

with $\tilde{p}_{j}=\sum_{i=1}^{e} x_{i}^{j}$ computed from the symmetric functions of $M_{\ell}(x)$, a factor of degree ed of f_{ℓ} can be computed.

Example. We consider the elliptic curve $y^{2}=x^{3}+2 x+41$ over \mathbb{F}_{59} with $j=31$. We determine a factor of the division polynomial f_{5} of E. Over $\mathbb{F}_{59}, x^{3}+41 x^{2}+45 x+32$ is a factor of $\Phi_{5}(x, 31)$. We obtain

$p_{1}(x)$	$56 x^{2}+31 x+41$	$p_{4}(x)$	$16 x^{2}+11 x+6$
$p_{2}(x)$	$46 x^{2}+22 x+26$	$p_{5}(x)$	$51 x^{2}+41 x+17$
$p_{3}(x)$	$21 x^{2}+20 x+39$	$p_{6}(x)$	$34 x^{2}+41 x$

And $p_{0}=2, p_{1}=38, p_{2}=28, p_{3}=22, p_{4}=7, p_{5}=38, p_{6}=21$, hence $x^{6}+21 x^{5}+13 x^{3}+10 x^{2}+3 x+55$ is a factor of f_{5} over \mathbb{F}_{59}.
4.2. Computing $t \bmod \ell$. We show how, when ℓ is an Atkin prime, we can test the equation $\pi_{\ell}^{2}+k=\tilde{\tau} \pi_{\ell}$ in $\tilde{\tau}$ by computing only x-coordinates of points. We recall first that if

$$
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right) \quad \text { and } \quad\left(x_{1}, y_{1}\right) \ominus\left(x_{2}, y_{2}\right)=\left(x_{4}, y_{4}\right),
$$

then we have

$$
\left(x_{3}+x_{4}\right)\left(x_{1}-x_{2}\right)^{2}=S\left(x_{1}, x_{2}\right) \quad \text { and } \quad x_{3} x_{4}\left(x_{1}-x_{2}\right)^{2}=P\left(x_{1}, x_{2}\right)
$$

with

$$
S\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right)\left(a_{1} a_{3}+2 a_{4}+2 x_{1} x_{2}\right)+x_{1} x_{2}\left(a_{1}^{2}+4 a_{2}\right)+4 a_{6}+a_{3}^{2},
$$

and

$$
P\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}-a_{4}\right)\left(x_{1} x_{2}-a_{4}-a_{1} a_{3}\right)-\left(x_{1}+x_{2}+a_{2}\right)\left(a_{3}^{2}+4 a_{6}\right)-a_{1}^{2} a_{6} .
$$

So the values x_{3} and x_{4} are solutions of the quadratic equation $E(X)=N X^{2}-$ $S X+P$ with $N\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}\right)^{2}$.

Following Müller's idea, we introduce the integers i, j and $k_{o p t}$ with the equation $i \pi_{\ell}^{2}+i k=j \pi_{\ell}$. We search a value j for which $x\left(j \pi_{\ell}\right)$ is a root of $E(X)=0$ given by $S\left(x_{i}^{q^{2}}, x_{i k}\right), P\left(x_{i}^{q^{2}}, x_{i k}\right)$ and $N\left(x_{i}^{q^{2}}, x_{i k}\right)$.

Indeed, if $x\left(i \pi_{\ell}^{2}+i k\right)=x\left(j \pi_{\ell}\right)$, then, for some $\tau_{0}, \pi_{\ell}^{2}+k= \pm \tau_{0} \pi_{\ell}$ over $E[\ell]$, so $\tau \equiv \pm \tau_{0} \bmod \ell$. Whereas, if $x\left(i \pi_{\ell}^{2}-i k\right)=x\left(j \pi_{\ell}\right)$, then $\pi_{\ell}^{2}-k= \pm \tau_{0} \pi_{\ell}$ and $\pi_{\ell}=2 k /\left(\tau \pm \tau_{0}\right)$, which is impossible since ℓ is an Atkin prime.

Hence, we avoid the computation of $y^{q^{2}}$ and y^{q} and obtain $t \equiv \pm \tau_{0} \bmod \ell$.
4.3. The sign of $t \bmod \ell$. Since π_{ℓ} satisfies the equation $x^{2}-\tau x+k=0$, we have $\pi_{\ell}^{n}=Q_{n} \pi_{\ell}+P_{n}$ with P_{n} and Q_{n} some polynomials in τ and k. We have $P_{n}=-k Q_{n-1}$ and moreover the polynomial Q_{n} contains only even powers of τ if n is odd and only odd powers otherwise [3]. On the other hand, $\pi_{\ell}^{e}=P_{e}$ and the value of e does not depend on the sign of τ. Hence, when e is odd, we have $P_{e}(\pm \tilde{\tau}, k)= \pm P_{e}(\tilde{\tau}, k)$, so $\pi_{\ell}^{e}= \pm P_{e}\left(\tau_{0}, k\right)$. Let w_{0} be $P_{e}\left(\tau_{0}, k\right)$.

Proposition 3. Assume $p \neq 2$, e odd; let h_{ℓ} be a factor of degree ed of f_{ℓ}, g_{ℓ} be a factor of degree es $\left(w_{0}\right)$ of h_{ℓ} and r be $\operatorname{Resultant}\left(g_{\ell}, \mathcal{G}\right)$. Then, when $s\left(w_{0}\right)$ is odd, we have $t \equiv\left(\frac{r}{q}\right) w_{0}^{s\left(w_{0}\right)} \tau_{0} \bmod \ell$. When $\ell \equiv 3 \bmod 4$, one can take $g_{\ell}=h_{\ell}$.
Proof. We have $\pi_{\ell}^{e}= \pm w_{0} I d$ over $E[\ell]$; hence, if $s\left(w_{0}\right)$ is odd, then $\pi_{\ell}^{e s\left(w_{0}\right)}=$ $\pm w_{0}^{s\left(w_{0}\right)} I d$ over $E[\ell]$ and, if d is odd, then $\pi_{\ell}^{e d}= \pm w_{0}^{d} I d= \pm\left(\frac{w_{0}}{\ell}\right) I d$ over $E[\ell]$.

From $\pi_{\ell}^{2}=\tau_{0} \pi_{\ell}+k$, we easily compute $w_{0}=P_{e}\left(\tau_{0}, k\right)$. The decomposition type of h_{ℓ} is determined by computing $s\left(w_{0}\right)$.
Example. Let us consider the curve $y^{2}=x^{3}+4312 x+9167$ over \mathbb{F}_{12853}. If $\ell=19$, then we have $e=5$ and using a factor h_{19} of degree 45 of f_{19} we obtain $t \equiv \pm 7 \bmod 19$. We compute $r=\operatorname{Resultant}\left(x^{3}+4312 x+9167, h_{19}\right)=11226$; since $\left(\frac{r}{p}\right)=1$ and $w_{0}=P_{5}(7,9)=4$, we have $t \equiv 7 \bmod 19$.

If $\ell=13$, then $e=7$ and $\tau_{0}=5$. Since $w_{0}=P_{7}(5,9)=10$, and $s(10)=3$, the polynomial h_{13} has an irreducible factor g_{13} of degree 21 . We obtain $r=$ Resultant $\left(x^{3}+4312 x+9167, g_{13}\right)=9515$ and $\left(\frac{r}{p}\right)=-1$, so we have $t \equiv 5 \bmod 13$.
Proposition 4. Let h_{ℓ} be a factor of degree ed of f_{ℓ}. If $p=2$ and e is odd, then, when $s\left(w_{0}\right)$ is odd, we have

$$
\tau= \begin{cases}w_{0}^{s\left(w_{0}\right)} \tau_{0} & \text { if } \operatorname{Tr}\left(\tilde{s}_{1}+B\left(\tilde{s}_{e s\left(w_{0}\right)-1}^{2}-2 \tilde{s}_{e s\left(w_{0}\right)} \tilde{s}_{e s\left(w_{0}\right)-2}\right) / \tilde{s}_{e s\left(w_{0}\right)}^{2}\right)=0, \\ -w_{0}^{s\left(w_{0}\right)} \tau_{0} & \text { otherwise }\end{cases}
$$

with \tilde{s}_{i} the symmetric functions of a factor g_{ℓ} of h_{ℓ} of degree es (w). When $\ell \equiv$ $3 \bmod 4$, one can take $g_{\ell}=h_{\ell}$.

Acknowledgment

The author would like to thank François Morain for his help during the realization of this work.

References

[1] A. O. L. Atkin, The number of points on an elliptic curve modulo a prime (I). Draft, 1988.
[2] A. O. L. Atkin, The number of points on an elliptic curve modulo a prime (II). Draft, 1992.
[3] R. C. Bose, S. Chowla, C. R. Rao, On the integral order ($\bmod p$) of quadratics $x^{2}+a x+b$, with applications to the construction of minimum functions over $G F\left(p^{2}\right)$, and to some number theory results, Bull. Calcutta Math. Soc., 36 (1944), pp. 153-174. MR 6:256b
[4] R. P. Brent, H. T. Kung, Fast algorithms for manipulating formal power series, J. Assoc. Comput. Mach., 25, 581-595, 1978. MR 58:25090
[5] J.-M. Couveignes, F. Morain, Schoof's algorithm and isogeny cycles, In L. Adleman and M.-D. Huang, editors, ANTS-I, volume 877 of Lecture Notes in Comput. Sci., pages 43-58. Springer-Verlag, 1994. MR 95m:11147
[6] J.-M. Couveignes, L. Dewaghe, F. Morain, Isogeny cycles and Schoof's algorithm, Preprint 1995.
[7] J.-M. Couveignes, Quelques calculs en théorie des nombres, Thèse, Université de Bordeaux I, July 1994.
[8] L. Dewaghe, Nombre de points d'une courbe elliptique sur un corps fini, Thèse, Université de Lille I, 1996.
[9] R. J. McEliece, Finite fields for computer scientists and engineers, Kluwer Boston 1987. MR 88h:11091
[10] N. D. Elkies, Explicit Isogenies, Draft, 1991.
[11] D. E. Knuth, The Art of Computer Programming : Seminumerical Algorithms, AddisonWesley, 1981. MR 83i:68003
[12] R. Lercier and F. Morain, Counting the number of points on elliptic curves over finite fields: strategies and performances, In L. C. Guillou and J.-J. Quisquater, editors, Advances in cryptology - EUROCRYPT'95, number 921 of Lecture Notes in Comput. Sci. pp. 79-94, 1995. MR 96h:11060
[13] R. Lercier, F. Morain, Counting points on elliptic curves over $\mathbb{F}_{p^{n}}$ using Couveignes's algorithm. Research Report LIX/RR/95/09, Ecole polytechnique - LIX, September 1995.
[14] A. Menezes, S. Vanstone and R. Zuccherato, Counting points on elliptic curves over $\mathbb{F}_{2^{m}}$, Math. Comp. 60, 407-420, 1993. MR 93f: 11098
[15] F. Morain, Calcul du nombre de points sur une courbe elliptique dans un corps fini : aspects algorithmiques, J. Théor. Nombres Bordeaux 7 (1995), 255-282. MR 97i:11069
[16] V. Müller, Looking for the eigenvalue in Schoof's algorithm, In preparation, October 1994.
[17] R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p, Math. Comp. 44, 483-494, 1985. MR 86e:11122
[18] R. Schoof, Counting points on elliptic curves over finite fields, J. Théor. Nombres Bordeaux 7 (1995), 219-254. MR 97i:11070
[19] V. Shoup, A new polynomial factorization algorithm and its implementation, J Symbolic Comput. (1995) Vol 20, 363-397. MR 97d:12011
[20] J. H. Silverman, The arithmetic of elliptic curves, vol. 106 of Graduate Texts in Mathematics, Springer, 1986. MR 87g:11070

Université de Lille I, UFR de Mathématiques, 59655 Villeneuve d'AscQ cedex, France E-mail address: dewaghe@gat.univ-lille1.fr

[^0]: Received by the editor May 11, 1996 and, in revised form, October 2, 1996 and February 19, 1997.

 1991 Mathematics Subject Classification. Primary 14H52, 14K02, 11 Y 16.
 Key words and phrases. Elliptic curves, finite fields, Schoof algorithm, division polynomials, computational number theory.

